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Analyses of mechanical and diffusive properties of fibres are described indicating strong 
lateral interactions between the microfibrils. These results show that uniaxially oriented 
polymers must be analysed in terms of a model where the crystallites are imbedded in an 
"amorphous" matrix. The equations are derived for modulus, strength and coefficient of 
diffusion in terms of crystallite dimensions, and the results compared with the 
experimental data. These results contradict the predictions of the microfibrils model 
where the properties are independent of the crystallite dimensions but depend solely on 
the degree of crystallinity. 

1. Introduct ion  
The structure of fibres is very complex and is the 
subject of numerous studies. It is well known that 
by varying the processing conditions and after- 
treatments it is possible to achieve technologically 
important variations in mechanical and diffusive 
properties. Many studies have been therefore 
carried out to establish correlations between these 
properties and morphological characteristics of 
fibres. A particularly promising and frequently 
suggested correlation involves the relationships be- 
tween amorphous orientation functions and fibre 
modulus, strength and coefficient of diffusion. In 
attempts to use these relationships as a non- 
destructive fibre quality control we frequently ob- 
served significant deviations from the expected 
trends. The morphological analysis of these excep- 
tional cases revealed that it is necessary to revise 
our present concepts of fibre structure. 

In all cases investigated to date, we found that a 
structural model consisting of crystallites em- 
bedded in an amorphous matrix yielded better 
results than a microfibrillar model assuming re- 
latively poor lateral interactions between the 
microfibril. The most important consequence of 
this is that the fibre properties do not depend only 

on the degree of crystallinity but also on the di- 
mensions and spacings between the crystallites. 

Small-angle X-ray diffraction and diffusion 
studies showed that the interfibrillar domains play 
an important role for the mechanical properties in 
fibres, while the microfibrils provide primarily the 
dimensional stability at elevated temperatures. 
Based on these findings we proposed a structural 
model which combines the elements of the micro- 
fibrillar and paracrystalline fibre models. Recently 
we examined these fibres by transmission electron 
microscopy using thin cross-sections. These studies 
confirmed our conclusions regarding the structure 
of PET and Nylon 6 fibres. These findings also 
show that the models of fibre strength, modulus 
and diffusion must be revised to include the di- 
mensions of crystallites. This conclusion is impor- 
tant because most of previous studies ignored this 
effect in qualitative analyses of fibre properties. 
Therefore, it was desirable to review our data 
related to this problem in one article. In addition 
to the summary of morphological and property 
analyses we also included in this paper the un- 
published derivations and an analysis of fibre 
strength which is consistent with the new fibre 
model. 
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2. Morphological background 
2.1. Microfibrils and intermicrofibrillar 

domains 
The mechanism of drawing and the structure of 
oriented polymers has been the subject of numer- 
ous investigations [1 -6 ] .  While minor differences 
in views still exist, most authors agree that the 
melt-spun and drawn PE, PP, Nylon and PET fibres 
consist of at least three distinct phases: amorphous 
and crystalline domains of the microfibril, and the 
interfibrillar matter. 

Almost all morphological studies of fibres show 
microfibrils as a well defined element structure 
whose width usually falls in the range between 60 
to 200A. The most important methods for 
studying the structure of micro fibrils are electron 
microscopy and small-angle X-ray scattering 
(SAXS). Since these two techniques lead to essen- 
tially the same lateral dimensions of the micro- 
fibrils, there seems to be little doubt at present 
that the microfibrils must be regarded as a separate 
element of fibre stru.cture. Nevertheless, less than 
a decade ago several prominent authors supported 
the idea that these fibres should be regarded as a 
one-phase paracrystalline structure. 

The existence of microfibrils is not restricted to 
textile fibres; they appear also in drawn single 
crystals, drawn single crystal mats, drawn spheru- 
litic sheets, solution-grown shish kebab fibres, 
capillary melt extrudates, solid-state extrudates 
and interlamellar links. Keller proposed that the 
microfibril can be divided into two classes [7]. 
Class (1) comprises substances whose molecules 
had been actually synthesized in the chain-extended 
form, such as biological fibres, crystals formed by 
in situ polymerization and structures resulting 
from stress- and flow-induced crystallization. 
When the microfibrils of Class (1) are heated close 
to the melting point the dimensions of the sample 
remain essentially unchanged. Class (2) comprises 
products of solid-state and melt drawing, in which 
the original crystalline or amorphous structure is 
destroyed, and the chains are aligned in the 
direction of the orienting force. The fibrils of Class 
(2) can shrink drastically when heated close to the 
melting point. The degree of shrinkage approxi- 
mately equals the extent of deformation during 
original orientation. 

Non-flow shrinkage experiments of Prevorsek 
and Tobolsky with melt-spun fibres show that 
with Nylon 6 and PET fibres at least 50% of total 
contraction is observed below the melting point 

of the fibre. The remaining part of contraction 
takes place very close or slightly above the melting 
point [8]. Consequently, these fibres must be 
regarded according to Barham-Keller criterion as 
inhomogeneous. It will be shown below that at 
temperatures considerably below the melting 
point, the shrinkage of fibres is caused primarily 
by the contraction of highly extended interfibrillar 
tie molecules. In this process the longitudinal 
structure of the microfibrils remains essentially 
unchanged because the contraction proceeds via 
lateral displacements of the micro fibrils, while the 
changes in their longitudinal dimensions are 
minimal. The extended-chain interfibrillar domains 
formed between intermediate and high draw-ratios 
belong to the Class (2). These domains are respon- 
sible for shrinkage occurring below the melting 
point of the fibre. The microfibrils, on the other 
hand, belong very likely to Class (1) because the 
complete contraction of the fibre is achieved only 
at, or very slightly above, the melting point. This 
would indicate that the microfibrils are products 
of stress4nduced crystallization. This means that 
their crystalline domains consist of elongated 
molecules produced by elongational flow. 

The microfibrils in Nylon and PET fibres con- 
sist of a sequence of crystalline and amorphous 
domains whose dimensions along the fibre axis 
are sufficiently regular to act as a microlattice 
whose characteristics can be investigated by small- 
angle X-ray scattering. An important characteristic 
of the micro fibril is the very long period which 
represents the spacing between two adjacent 
crystallites in the microfibril. Dimensions of the 
microfibrils found in Nylon, PET, PP and PE fibres 
are listed in Table I. With regard to the structure 
of the microfibril, it should also be noted that the 
crystallite length along the microfibril axis is 
always about ~ of the long period. 

The elements of microfibrils listed in Table I 
are the only characteristics of this structural unit 
whose dimensions are well defined. Not much 
work has been reported on the longitudinal dimen- 
sions of the microfibrils although some authors be- 
lieve that the fracture of fibres under stress is 

T A B L E I Typical dimensions of the microfibrils (A) 

PE PP Nylon PET 

Long period 90 90 150-180 
Crystallite length 60 60 
Amorphous length 30 30 
Diameter 160 120-90 330-160 
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initiated at microfibrfl ends [9]. Recent studies of 
the structure of  microfibrils by means of trans- 
mission electron microscopy from thin longitudinal 
sections of fibres indicated that the longitudinal 
dimensions of the microfibril are not well defined. 
Based on these studies, Reimschuessel and 
Prevorsek [10] conclude that the microfibrils 
form an essentially endless interwoven structure, 
where branching and fusion of microfibrils may 
be more characteristic than an abrupt end of the 
microfibril. 

A great deal of work has been, heretofore, 
devoted to the structure of the microfibril; the 
nature and importance of the interfibrillar matter 
has attracted much less attention. First references 
to this matter appear in diffusion and deformation 
studies of Peterlin [1]. This author concludes that 
at least some of the interfibrillar space is filled 
with highly extended interfibrillar tie molecules 
which are the main factor in fibre shrinkage in the 
temperature range below their melting point. This 
view is supported by the analyses of  Prevorsek et  

al., which indicate that with Nylon and PET fibres, 
the volume fraction of the extended interfibrillar 
tie molecules is so significant that they should be 
considered as a separate phase [6, 11]. More work 
is needed to establish quantitatively the amount of 
these extended chains in various fibres. 

Differences in opinion exist also with regard to 
the interactions between the microfibrils. Many 
authors concerned with the mechanical properties 
of fibres assume that the interfibrillar interactions 
are very small and thus the properties of  fibres can 
be visualized as the properties of a loosely packed 
ensemble of the microfibrils [12, 13]. As a result, 
the modulus of a fibre as function of the degree of 
crystallinity was calculated as the modulus of an 
isolated microfibril. It is possible that this micro- 
fibrillar model is applicable to some forms of poly- 
ethylene and polypropylene fibres. The results and 
discussion below will show that, with PET and 
nylon fibres, the interaction between the micro- 
fibrils is sufficiently high to lead to conditions in 
which the crystaUite dimensions have an important 
role in fibre modulus. This shows that the micro- 
fibrillar model, according to which the modulus is 
dependent on degree of crystallinity only, cannot 
be applied to these fibres. 

The analysis of fibre strength is still a subject of 
intensive investigations. Two theories exist which 
could not be farther apart: Peterlin reasoned that 
the fibre strength should be attributed primarily to 
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the strength of the microfibrils while the inter- 
fibrillar domains did not contribute a great deal to 
fibre strength [9]. It must be pointed out that this 
author and his coworkers primarily studied the 
structure and properties of polyethylene and poly- 
propylene fibres and that these conclusions pro- 
bably hold well for these fibres. 

With Nylon and PET fibres, on the other hand, 
the situation seems to be quite different. Accor- 
ding to the analyses of Prevorsek et  al. [6, 11 ] the 
extended-chain interfibrillar domains are the 
strongest element of fibre structure, and have an 
important effect on fibre strength. The increase in 
fibre strength on drawing is attributed to an in- 
crease in the volume fraction of the extended-chain 
molecules which are formed as a result of the 
relative displacement of the microfibrils. In this 
process the molecules from the surface of the 
microfibrils are sheared off and stretched. 

According to this model, the main role of the 
microfibrils is to provide dimensional stability at 
elevated temperatures, rather than contributing 
significantly to fibre strength. Note that the 
melting point of the microfibrils is considerably 
above the softening point of the extended inter- 
fibrillar regions, whose order and density are inter- 
mediate between that of the crystalline and amor- 
phous domains of the microfibril. 

A transmission electron photomicrograph of a 
thin cross-section (not stained) of a PET fibre is 
shown in Fig. 1. The light (the less dense) areas 
correspond to the microfibrils. Structural models 
consistent with SAXS, electron microscopy and 
diffusion analyses are shown in Figs. 2 and 3. The 

Figure 1 Transmission micrography of thin cross section 
in unstained sample of highly drawn PET fibre. 
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Figure 2 Schematic structure of PET fibres. Fibre axis vertical. 
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Figure 3 Schematic structure of Nylon 6 fibres. Fibre axis vertical. 

arrangement of crystallites, staggered in PET and 
in layers with Nylon 6 is based on SAXS data for 
PET and SAXS and electron microscopy analyses 
for Nylon 6 [6, 10, 11]. 

2.2. Superfibrillar structure and fibri l lation 
An important characteristic of the model presented 
above is considerable interfibrillar strength, that is 
strength perpendicular to the fibre axis. Many 
fibres, including Nylon and PET, can be split easily 
in a direction parallel to the orientation. This 
tendency for splitting is so pronounced that it can 
be technologically exploited. There are many 

fibrillation processes in which oriented films or 
fibres are mecahnically split into fibres whose di- 
mensions approach those of textile fibres [14]. 
Studies of Prevorsek et al. on fibre splitting 
showed that rolling, flexing, etc. of nylon fibres 
does not lead to splitting unless the fibres are spun 
with additives which form weak domains between 
nylon fibrils [14a]. On the basis of these results 
we implied that the interfibrillar strength of nylon 
fibres is considerable. In order to resolve this 
problem Reimschuessel and Prevorsek carried out 
a study of thin cross-sections from PET and Nylon 
fibres by means of transmission electron micro- 
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TABLE II Thickness of fibrils and interfibrillar regions in Nylon 6 fibres before and after staining with SnC12 : effect 
of draw ratio 

Draw ratio Unstained Stained 

Thickness of Thickness of inter- Thickness of Thickness of inter- 
fibrils (A) fibrillar regions (A) fibrils (A) fibrillar regions (A) 

Undrawn 700-1000 700-1000 NI NI 
3 • NI NI 500-600 500-600 
5.35 X 350-500 300-470 200-350 350-740 

NI = Not investigated. 

scopy [10] which supported the structural models 
presented in Figs. 2 and 3. 

These studies revealed another element of fibre 
structure whose shape is ribbon4ike and which has 
a thickness of about 300 to 400A in highly 
oriented Nylon 6, and is affected by fibre draw 
ratio. The SnC12 staining techniques and the 
details of sample preparation are discussed else- 
where [10]. The dimensions of these fibrils and 
interfibrillar region of Nylon 6 fibres before and 
after staining are summarized in Table II. A review 
of the literature data shows that this larger 
element of the structure was previously observed 
[15]. However, not enough attention has been 
paid to its dimensions and thus it was assumed 
that it is the microfibril. We propose that this 
element of the structure be referred to as the fibril 
because in many respects it bears a striking 
similarity with the microfibril. The fibrils can be 
readily resolved by ion-bombardment etching as 
shown by N. V. Hien et  al. [15]. This treatment 
removes preferentially the less dense matter which 
separates the fibrils. 

In longitudinal direction, the dimensions of the 
fibril are not well defined, because they form a 
branched and intertwined continuous network, 
similar to that of the microfibrils but on a larger 
scale. Near the surface, the fibrils are frequently 
oriented with their wider surface parallel to the 
fibre surface. 

In the domains between the fibrils, one often 
observes longitudinal cracks which separate clusters 
of several hundreds of microfibrils. The tendency 
of fibres to split must, therefore, be attributed to 
the fibrillar structure of the fibre, and the existence 
of the cracks in the domains separating the fibrils 
[10]. Since the ease of fibre splitting can be con- 
trolled by varying the spinning and drawing con- 
ditions of fibre preparation, it appears that the 
nature of the fibrillar structure of the fibres can 
be controlled more easily than their microfibrillar 
structure. 
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Several important conclusions must be derived 
from the results and discussions of recent studies 
in fibre morphology. First, it is quite obvious that 
the structure of all fibres, and even of all melt- 
spun fibres, cannot be represented by the same 
model. The errors in such assumptions can be very 
large because it appears that the interaction be- 
tween the microfibrils can vary considerably from 
fibre to fibre. Second, with melt-spun Nylon and 
PET fibres, where the interaction between the 
microfibrils is very large, it must be expected that 
the dimensions of crystallites .and the charac- 
teristics of the macrolattice of these crystallites 
must have an important role in the mechanical and 
diffusive properties of fibres. Consequently, it is 
necessary to take these dimensions into con- 
sideration in theoretical treatments of modul~s, 
diffusion, strength, etc. Finally, it must be recog- 
nized that not enough work has been performed 
on the analysis of the structure of the interfibrillar 
and intermicrofibrillar domains which have an im- 
portant influence on fibre properties. 

3. Diffusion 
The control of the rate of dyeing and of the dye- 
uptake is one of the most challenging problems 
of textile technology; it is not surprising that 
the effects of fibre morphology on the diffusion 
characteristics of fibres attracted the attention of 
many authors during recent years. 

The-ffpproach presented below had been influ- 
enced by the work of Bell [16] and Dumbleton 
et al. [17]. These authors showed the existence of 
very interesting correlations between (a) the dif- 
fusion coefficient and the imaginary modulus or 
viscosity of the sample, and (b) the diffusion and 
the morphological characteristics of the fibre. 
However, no attempts were made by these authors 
to treat the experimentally determined diffusion- 
imaginary modulus relationships explicitly in 
terms of fibre morphology. Since such analysis 
would help in clarifying the role of morphology on 



diffusion, we refined their basic relationships to 
account for these effects. Our approach is based 
on the following considerations: 

Fujita et al. [18] have shown that the diffusion 
coefficient D, in amorphous polymers in the 
rubber state is given by 

in (DIRT) = --BIn r~ + C (1) 

where R is the gas constant, T the absolute tem- 
perature, r2 is steady-state viscosity, and B and C 
are constants dependi.ng on the chemical structure 
of the polymer and penetrant. B is further ex- 
pressed as 

B -  ~ v  (2) 
L H  B " 

2d-/v and 2d-/B in Equation 2 are, respectively, the 
activation energies of viscous flow and diffusion. 
In cases where the size of the diffusing molecule is 
comparable to the size of the polymer segment 
that moves, &/-/v = zX/-/B and B = 1. 

In the case of a semicrystalline polymer above 
the glass transition temperature, where the crystal- 
line phase is essentially impermeable to diffusing 
molecules, the diffusion within the amorphous 
domain can still be expressed by Equation 1 in the 
form 

in (Da/RT) = --B a In r~ a + C a (3) 

where the subscript a denotes that the particular 
quantities refer to amorphous phase only. 

In the more complicated two phase system of 
semi-crystalline polymers, the diffusion processes 
may be described by the empirical equation 

m D D = q~, , ,  (4) 

where q5 a is the degree of amorphicity, and m is a 
factor depending on the tortuosity of the per- 
meable channels. Calculations, based on the geo- 
metrical features of the permeable and impermeable 
phase, show that rn falls in the range between 0.3 
and 1. Rewriting Equation 4 as 

in (DIRT) = m In ~a q- In (Da/RT), (5) 

and combining Equation 5 with 3 we obtain 

In (D/RT) = --B.  Inna + G + m In q~a- (6) 

The amorphous viscosity r2a can be related to the 
measurable sample viscosity rL by 

n = 02~a (7) 

where n is a constant related to the load transfer 

between the phases. From Equations 6 and 7 we 
have 

In (DIRT) = -Ba(- -n  In G + In r?) 

+ Ca + m In Sa, (8) 

which can be rewritten as 

in (DIRT) = - - B  a in ~7 + C a  + ln(d)rn+nBa'~'.Ya J 

(9 )  

leading to the interpretation of diffusion results in 
terms of polymer structure. In Equation 9; (i) 
sample viscosity can be estimated from dynamic 
experiment by means of E"/co, where oo = fre- 
quency in the experiment, (ii)Ca, Ba, G ,  m and n 
are constants independent of temperature, (iii) 
with samples of the same amorphous orientation, 
B a is independent of Sa. 

Prevorsek and Butler [19] applied Equation 9 
to a series of experimental Nylon 6 fibres. The 
values of the various parameters in Equation 9 
were obtained by analysing samples of (1) nearly 
equal viscosity and different amorphous content, 
(2) nearly equal viscosity and different amorphous 
content, but equal total and amorphous orien- 
tation, and (3) nearly equal amorphous content. 
Assuming the path of penetrating molecules to be 
approximately 1.5 times as long as it would be 
without the crystallites, the values of the para- 
meters obtained were as follows: 

rn = 0.5 
n = 0.68 
B a = 2.4 
C a ----" 30.3 

Substituting these values into Equation 9 gives 

In (D/RT) = - - 2 . 4  in (E"/oo) + Ca + In q~1.12. 

(10) 

In order to establish the accuracy of Equation 
10 for describing the effects of fibre morphology 
on dyeing characteristics of Nylon 6 fibres, we 
selected 10 samples of various deformation and 
thermal histories, and carried out the necessary 
morphological and dyeing experiments. These 
results are summarized in Table III and Fig. 4. 
The plot of calculated and experimentally ob- 
served coefficients of diffusion shows an excellent 
correlation, supporting the validity of the concepts 
employed in the derivations of these expressions. 
It must be, however, recognized that there also 
are significant deviations from the predicted trend 
which this theory was unable to explain. In the 
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TABLE III Experimental Nylon 6 fibres; e 1 = dye uptake in I0 min, c -  dye uptake at equilibrium, D = diffusion 
constant, proportional to (cl/c~) 2, E"= loss modulus measured at 35 ~ C, 95% r.h., l l0Hz,  w = 21r(1 1 0), q~a = 
amorphous volume fraction. 

Sample ( c  ~ / c ~ )  2 ~ D *7 = E"/co  49a fa fe Crystallite size 
(10' P*) (A) 

0r 1 C~ 2 

I 0.144 0.90 0.32 0.50 0.90 75 36 
II 0.140 0.99 0.58 0.41 0.93 70 37 
III 0.085 0.94 0.51 0.50 0.92 70 37 
IV 0.073 1.07 0.46 0.50 0.89 70 36 
V 0.107 0.92 0.43 0.50 0.89 66 36 
VI 0.151 0.80 0.50 0.44 0.86 74 37 
VII 0.262 0.63 0.53 0.44 0.86 72 36 
VIII 0.460 0.72 0.52 0.34 0.89 70 36 
IX 0.301 0.72 0.51 0.38 0.92 72 36 
X 0.191 0.81 0.53 0.43 0.90 74 37 

* IP=  10 -1 Nsecm -2. 

search for a more accurate approach we decided-to 
abandon the easy route via E "  because of  its sen- 
sitivity to the dimensions of  the crystallites and 
the characteristics of  the macrolatt ice discussed 
in the section on modulus. 

The expression for the coefficient of  diffusion 
in terms of the crystallite dimensions and the 
spacing between the crystallites can be derived em- 
ploying the method of  Barrer and Petropoulos 
[20, 21] .  This involves the treatment of  diffusion 
in a lattice of  identical rectangular parrallelpipeds 
embedded in a continuum described in Appendix 1. 

This t reatment leads to the following two 
expressions for the diffusion coefficients parallel, 
DH, and perpendicular,  D• to the fibre axis 

hb(2a + b)D A 
DII = (a + b)2hA(1 + hB/~hA) (1 1) 

/ kCooJexp IX 

0.25= / / / ~ l l  
i x 

0 0 0.25 0.50 

Coo/calc. 
Figure 4 Calculated and measured coefficient of diffusion. 
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and 
hab + hba + hbb D 

D• = ( a + b ) a ( l ~ b ~ )  A (12) 

where 

D A = diffusion coefficient of the amorphous 
phase, 

a = crystallite diameter, 

b = lateral spacing between the crystallites, 
ha = crystallite height, 

hb = longitudinal spacing between the crystal- 
lites, 

ha + hb = h = long period, 
/3 = coefficient related to nonparallel flow lines. 

We assume/3 = 1. 

Thus, this approach requires the determination of  
the lateral spacing between the crystaltites b, a 
quanti ty which has not  yet  been determined in 
fibres, and which reflects the volume fraction of  
the interfibrfllar matter.  

In the absence of  an independent  method to 
determine b, it is impossible at this stage to 
analyse the diffusion and dyeing responses of  
fibres in terms of  morphological characteristics. 
This situation is particularly critical for the 
analysis of dyeing nonuniformities observed on 
thermal and mechanical treatments (such as 
texturing). There the chemical composit ion of the 
fibre remains essentially unchanged and variations 
in dyeing characteristics are primarily caused by  
changes in fibre morphology.  It must be, there- 
fore, recognized that the interpretat ion of  dyeing 
results in terms of  the variables of  fibre structure 
is at this stage still inaccurate and the reported cor- 
relations may include a considerable error. 



The use of Equations 11 and 12 above, on the 
other hand, permits the determination of b for 
systems where D• and DII are experimentally 
determined. The application of this method to 
nylon fibres yields a spacing of 10A for fibres 
drawn 3 x, and 29 A for fibres drawn 5.3 x. 

These results have important implications on 
the mechanism of deformation between inter- 
mediate and high drawn ratios. In a drawing process 
where (1) the stretching of the microfibrils equals 
the macroscopic stretching of the fibre, and (2) 
the fibre is incompressible, the microfibril diameter 
and fibre length changes are related as follows; 

D ~  1L1 = D2m, 2L2 (13) 

where D m is the fibre diameter, L is the fibre 
length, and subscripts 1 and 2 denote the di- 
mensions before and after drawing, respectively. 

If one assumes that the SAXS width of the 
crystallites corresponds approximately to the 
width of the microfibril, then the crystallite width 
ratio of fibres drawn 3 • and 5.35 • should be in 
the order of ~/(5.35/3) = 1.33. The fact that the 
measured crystallite width ratio of 1.61 is much 
higher indicates that the microfibrils do not under- 
go the same degree of stretching as the fibre during 
this stage of drawing. A 3 x drawn fibre with 
microfibril diameter of l 19A should lead to a 
microfibril diameter of 90A in a 5.35 x drawn 
fibre. This is 16A more than the experimentally 
observed value of 74 A. 

Thus, during drawing of nylon 6 fibre from 3 • 
to 5.35 • the microfibrils do not stretch but slip 
past one another. This is based on the following 
findings: (1) The longitudinal structure of micro- 
fibrils (amorphous and crystallite length) remains 
essentially unchanged. (2) The microfibril thinning 
exceeds that of the fibre. (3) The spacing between 

Figure 5 Model of drawing of nylon fibres between inter- 
mediate and high draw ratios. 

the microfibrils increases. The microfibrils are 
sheared with respect to each other. The inter- 
fibrillar phase formed by the matter removed from 
the microfibrillar surfaces has a density similar to 
the average density of the microfibril. A model of 
this type of drawing is shown in Fig. 5. 

4. Modulus 
Bending and tensile moduli are very important 
textile properties [22-24] .  Although the bending 
modulus appears in many equations describing the 
behaviour of fabrics and other textile structures, it 
is seldom determined in textile laboratories. Two 
principal problems are encountered in the deter- 

minations of bending modulus; (a) it is difficult to 
measure on long filament sections and (b) its 
determination is severely limited with fibres having 
non-uniform and non-circular cross-sections. 

Several authors have investigated the relation- 
ships between bending and tensile moduh of 
fibres; it appears that these two properties are 
closely related and that for a given fibre it can be 
assumed that the bending modulus is proportional 
to tensile modulus. The proportionality constant 
between two properties, however, varies from fibre 
to fibre [22-24] .  

Since there is much more data available for 
the tensile than the bending modulus we shall limit 
the discussion of the effects of morphological and 
molecular variables on the tensile modulus. 

The calculations of the modulus of elasticity 
corresponding to the principal chain direction of a 
polymer crystal of specified structure may be 
made from the force constants for bond-stretching 
and valence-angle deformation derived from 
vibration frequencies of molecules. Directional co- 
sines and appropriate bond angles, and the packing 
of the chains in the crystals are derived from the 
X-ray data. The results obtained by Meyer and 
Lotmar [25], Lyons [26], Treloar [27] and 
Jaswon and coworkers [28], while based on cal- 
culations that neglect the effects due to inter- 
actions between polymer chains, are in most cases, 
in gratifying agreement with the crystal lattice 
moduli determined experimentally.by Dulmage 
et  al. [12] and Sakurada et  al. [13] (In a recent 
article on the effect of hydrogen bonds on the 
axial stiffness of crystalline native cellulose, Gillis 
[29] introduced the significant influence of inter- 
chain primary bonds on deformational behaviour.) 

The c6ntribution of the moduli of the crystal- 
lites to the moduli of the semi-crystalline fibres is 
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affected by the type of load-transfer between the 
phases, which in turn depends on a variety of  
characteristics of  the fibre structure. Many authors 
assume that, with respect to mechanical properties, 
the oriented polymers could be considered as a 
parallel array of microfibrils which are held to- 
gether by a relatively weak interfibrillar matter.  
With this model, then, the modulus of  the fibre is 
determined solely by the modulus of  the micro- 

and X~b = X = degree of  crystallinity. 
The model has two extreme responses. When 

X = 1 the response is in series (or equal stress); 
when q~ = 1 the response is in parallel (or equal 
strain). With isotropic semi-crystalline polymers 
X ~ q~ < 1, while an isolated microfibril is expected 
to yield a series response (i.e. X = 1). 

In order to apply this method in determining 
the appropriate model (i.e., the values of  X and ~) 

f ib r i l ,  which, in , t t tm i s  detexmined ,b~. , the ,corn ...... it is,.necessary~ ,to determine,oE~,~Ee, ~Ea,,and t h e  
bination of the moduli of  the alternating amor- 
phous and crystalline regions when they are loaded 
under conditions of  equal stress (i.e. series load 
transfer). An important  feature of  this micro- 
fibrillar model, and the load transfer conditions 
which it implies, is that the fibre modulus is inde- 
pendent of  the crystallite length to diameter ratio 
(i.e. aspect ratio). 

An alternative mechanical model of  a fibre in- 
volves the crystallites embedded in the "amor- 
phous" matrix. In this case, the crystallite aspect 
ratio has a fundamental influence on the load 
transfer characteristics and thus the modulus of 
the fibre. For this model, equal stress (i.e. series) 
load transfer between the amorphous and crystal- 
line regions is approached when the crystallites are 
platelets oriented perpendicular to the fibre axis. 
Other crystallite shapes (aspect ratios) give rise to 
different load transfer conditions. 

A convenient means of  determining which fibre 
model is more appropriate with respect to load 
transfer is to analyse the fibre modulus in terms of 
the moduli of  the crystalline and amorphous 
regions. We have performed such an analysis on a 
series of  Nylon 6 fibres of  various draw ratios. Our 
analysis is based on the work of  Takayanagi, who 
has shown that the mechanical response of  two- 
phase systems may be represented by means of 
unit cube models [30]. 

In this representation the fibre modulus Ee is 
given by 

E f  = X[~)/E e + ( i  --~b)/Ea] -1 + ( 1  - -X)Ea (14) 

where E e and Ea are the respective moduli of  
crystalline and amorphous domains of  the fibres, 

degree of  crystallinity, X. 
In our study, the fibre modulus was measured 

directly on a dynamic-viscoelastometer at 110 Hz. 
The fibres were characterized by wide-angle X-ray 
diffraction to determine the degree of  crystallinity 
and the crystalline orientation function. The amor- 
phous orientation function was estimated from 
X-ray and birefringence data using the method of  
Stein [31]. Estimates of the effective crystalline 
modulus were made from the works of  Dulmage 
et  al. [12] and Sakurada et  al. [13] noted pre- 
viously together with the experimentally deter- 
mined crystalline orientations. In order to estimate 
the effective amorphous modulus for each fibre in 
the series, we assumed that the modulus of  the 
amorphous phase of the fibre of  orientation fa was 
equal to that of  an ~ fibre (as deter- 
mined by wide-angle X-ray) of  the same orien- 
tation. 

• I0 ~~ 
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Figure 6 Modulus of oriented amorphous Nylon 6 fibres. 

T A B L E IV Vertical (4) and horizontal (X) dimensions of the mechanical analog 

Ef (dyne cm -2 ) X Ee (dyne cm -2 ) X ~b Ea (dyne em -2 ) q~ 
X 10 ~~ (%) X 10 ~~ X 101~ X 

1 X 2.35 0.63 12 0.80 0.787 0.70 0.98 
3 X 4.80 0.56 25 0.98 0.570 2.34 0.58 
5.35 X 5.50 0.34 25 0.52 0.654 3.26 1.26 
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In the absence of data relating the amorphous 
modulus of Nylon 6 to orientation we prepared a 
series of "amorphous" fibres of different orien- 
tations (as determined from birefringence data 
using A ~ = 0.073) and measured their moduli at 
l l0Hz.  The data for these specially prepared 
"amorphous" fibres is plotted in Fig. 6. 

With the necessary estimates of the required 
quantities in hand, we proceeded to determine 
the vertical (r and the horizontal (X) dimensions 
of the general mechanical model represented by 
Equation 14. These results are given in Table IV. 

These calculations showed that only the fibres 
of intermediate draw ratio exhibit a series response 
(X ~, 1, equal stress between phases) which is con- 
sistent with the microfibrillar fibre model. For 
fibres of draw ratio of 5.3 x, X is considerably less 
than 1. Thus, it was concluded that the micro- 
fibrillar model does not adequately represent this 
system [6]. 

In order to estimate the effective length to 
diameter ratio of the crystallites in the 3 x and 
5.3 x fibres we employed equations derived by 
Halpin and Tsai [32] shown below. These 
equations may be applied to two phase systems in 
which the higher modulus reinforcing elements 
(i.e. the crystallites) are embedded in a matrix (i.e. 
the amorphous material) and are perfectly aligned 
with respect to the applied load. 

Ef = [1 + Ur/X)/(1 --~TX)]Ea (15) 

where 

= (Ee/E a -- 1)/(Eo/Ea + U) 

U = 2(l/d)*, 

l, d = length, diameter of crystallites, 

and X = degree of crystallinity. 
The calculations of the fibre modulus as a 

function of the crystallite aspect ratio for the 
3.0 x and 5.35 x fibres lead to the following 
results. The crystallite aspect ratio for the 5.35 x 
fibre corresponding to its (measured) modulus is 
about 1, while the length to diameter ratio for the 
3.0 x fibre is less than ~ .  In other words, the 
crystaUites in the low draw ratio fibre are shaped 
like platelets oriented perpendicular to the fibre 
axis, while for the higher draw ratio, the crystallites 
approach the shape of cubic particles. These 

estimates of the crystallite shapes do not agree 
with crystallite dimensions obtained from wide- 
angle X-ray analysis and small-angle X-ray long- 
period estimates, since these analyses imply that, 
in drawing fibres from 3.0 to 5.35 x, only a small 
decrease in crystallite width occurs. 

In order to resolve this discrepancy between the 
mechanical and crystallographic analyses, we ob- 
tained additional information on the crystallite 
dimensions by employing the small-angle X-ray 
methods of Harget [33], and Gezalov [34]. These 
studies indicated that drawing from 3.0 x to 
5.35 x has little influence on the crystallite size 
in the direction of orientation, and that the 
crystallite width decreases significantly from 
l19A for the 3 x fibres to 70A for the fibres 
drawn 5.35 x. The crystallite aspect ratios for the 
fibres estimated from the SAXS and the modulus 
analyses are shown in Table V. The results indicate 
a qualitative agreement, in that both methods 
indicate an increase in aspect ratio with increased 
draw ratio. Quantitative agreement is fair for the 
5.3 x fibres, but for the low draw ratio fibres, the 
discrepancy is too large to be ignored. 

TABLE V CrystaUite aspect ratios from SAXS and 
modulus data 

Draw ratio SAXS Modulus analysis 

3 X 0.48 0.02 
5.3 • 0.8 0.5 

The difference in lid could result from the fact 
that (1) neither of  the two models adequately 
represents the state of stress in these fibres, or (2) 
the crystallites in the fibres of low draw ratio are 
so close that the crystals are mechanically coupled 
across thei? boundaries. In order to explore this 
second hypothesis it was necessary to determine 
the spacing between the crystallites. This par- 
ameter was obtained by means of diffusion 
analysis described above. 

According to this analysis the lateral spacing 
between the crystallites in Nylon 6 fibres drawn 
5.3 x is almost three times as that in the same 
fibres drawn 3 x. On the basis of these results, and 
SAXS data which indicate that the crystallites in 
these fibres are arranged in planes perpendicular 
to the fibre axis, it was postulated that in fibres 
drawn 3 x the relative displacement is inhibited by 

*In comparing Equations 14 and 15 it is important to note that the parameters r and X of Equation 14 are not closely 
related to the dimensions of crystallites I and d appearing in Equation 15. This can be best illustrated by ~comparing 
2qVh and U for some values of Ea, E e and X as shown in Appendix 2. 
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Figure 7 Model of mierofibril fusion via epitaxial crystal- 
lization of extended chain molecules. 

a narrow junction where two crystallites are fused. 
A recent electron microscopy study with Nylon 6 
fibres stained with SnC12 support the view that the 
crystallites in adjacent microfibrils may be fused as 
shown schematically in Fig. 7. 

These results clearly show that the modulus is 
not a function of amorphous and crystalline 
orientation as assumed by several investigators. 
The neglect of the role of crystallite dimensions 
and the characteristics of the crystalline macro- 
lattice can lead to significant errors in the inter- 
pretation of the results or in the prediction of pro- 
perties on the basis of morphological characteristics 
of the fibre. 

The effect of heat-setting on modulus is pro- 
bably as important as that of draw ratios when the 
analysis of textile performance is the consideration. 
Heat-setting is frequently a necessary and im- 
portant step in the manufacturing of fabrics. It is 
well known that heat-setting leads to a marked 
difference in the wrinkling behaviour of fabrics 
and part of this effect is associated with the 
change in the fibre modulus. 

In the analysis of the effects of heat-setting on 
fibre structure and modulus, it is necessary to take 
into consideration the role of pretension or degree 
of shrinkage (or extension) during the heating of 

2320 

fibres (or fabrics). On the results of Stratton et al. 
[35] and McGraw [36], and the data presented 
below, it is quite clear that pretension has an im- 
portant effect on the magnitude and the rate of 
structural and property changes during heat- 
treatments. In general, the changes in modulus and 
structure are much less when the heat-treatments 
are carried out under high pretension (or low 
shrinkage), than under conditions where the 
samples are free to contract. 

The effect of shrinkage on fibre morphology 
and modulus was recently investigated by Prevorsek 
et al. [11] in a series of experiments, where a 
series of PET fibres of various molecular weights 
were first drawn to a practical maximum draw 
ratio, and then allowed to contract thermally 
under tension for 10, 20 and 38%. The contraction 
was carried out by passing the fibres over a heating 
block kept at 225 ~ C. The respective contact times 
of fibres with the heating block were 3.16, 3.33 
and 3.70 sec for experiments leading to 10, 20 and 
38% contraction. The tensions on the yarn during 
the contraction step, however, varied from 150 to 
15g for the experiments involving 10 and 38% 
contraction. 

The molecular weights and drawing extension 
of fibres subjected to these experiments are sum- 
marized in Table VI while the moduli at 23 and 
-- 100 ~ C are presented in Table VII. 

These results show that, in general, contraction 
leads to a decrease in modulus and amorphous 
orientation as observed by previous workers [5]. 
However, the correlations between degree of con- 
traction and modulus, and amorphous orientation 
and modulus may not be as simple as indicated. 
Although the modulus decreases monotonically 
with increasing contraction both at 23 and -- 100 ~ C 
the two sets of data reveal marked differences in 
the dependence of modulus on the degree of con- 
traction. Note, for example, that contraction from 
0 to 10% leads to an average decrease in modulus 
from 300 to 190 (~34%) at -- 100 ~ C, whereas the 
decrease at 23 ~ C is from 202 to 165 (~  19%). The 
trend is, however, reversed in the contraction 
range from 10 to 20%, where the change is larger 
at 23 ~ C ("30%)  than at -- 100 ~ C (~  9%). 

Similar differences exist in the variation of 
modulus with amorphous orientation. Thus, for 
example, a contraction from 20 to 38% has no 
effect on the amorphous orientation function but 
the modulus decreases by about 45% at 23 ~ C and 
60% at -- 100 ~ C. 



TABLE VI Number-average molecular weights and 
drawing extensions of experimental PET fibres 

Sample 3~r n (x 104) Drawing extension, 
AL/L X 100 

I 1.33 480 
II 2.11 500 
III 2.63 560 
IV 3.05 530 

This last observation is particularly important 
because several studies reported in the literature 
indicate surprisingly good correlations between 
properties and values of  amorphous orientation 
functions [5].  We investigated these relationships 
on several occasions, and found that frequently 
fa  gives a good correlation with properties. How- 
ever, there are also numerous exceptions to this 
and, therefore, we discourage the use of  this 
function to correlate fibre properties with mor- 
phology. 

The failure of  orientation functions to explain 
modulus is not  surprising in view of  numerous 
changes in the fibre structure which take place 
during thermal contraction. The summary of  these 
changes is given in Table VIIL 

On the basis of  the above results it can be con- 
cluded that heat setting leads to a decrease in 
modulus and that the magnitude of  the effect in- 
creases with increasing temperature, time of  heat- 
setting as well as the degree of  contraction of  
fibres during this operation. 

5. Strength 
In order to establish the morphological factors 
which affect fibre strength, we must examine the 
structural models of  PET and Nylon 6 fibres 
shown in Figs. 2 and 3. In addition we take into 
consideration the structural changes occurring 
during drawing, discussed above. Since in this pro- 
cess the microfibrils are not stretched but rather 
slip past one another, it is assumed that in this 
phase of  drawing the strength of  the microfibrils 
remains essentially unchanged. The relative dis- 
placement of  microfibrils involves the removal of  
the matter from the surfaces of  the microfibril 
which leads to the formation of  a highly extended 
interfibrillar phase. The density of  these extended- 
chain phase is similar to the average density of  the 
microfibril. Thus, it can be assumed that the order 
of  these domains is higher than that of  the amor- 
phous domains in the microfibril and less than that 
of  the crystallites of  the microfibril. Because the 
interfibrillar domain consists predominantly of  
extended-chain molecules, it represents the 
strongest phase of  the fibre structure. On the basis 
of  IR data indicating a considerable amount of  
regular chain-folding, we believe that the micro- 
fibrils are relatively weak probably in the order of  

2 g den -1 * for Nylon 6. 
The amorphous domains of the microfibril are 

the weakest element of  fibre structure and are re- 

*9 den = lgkm -1 

TABLE VII Experimental PET fibres 

Degree of 
contraction 
(%) 

Sample fa Modulus (g den -1 ) and average variation 

+23~ 

Modulus Average* 

- -  1 0 0  ~ C 

Change Modulus Average* Change 
(%)t (%)t 

0 I 198 
II 205 
III 202 
IV 0.729 205 

10 I 155 
II 162 
III 167 
IV 0.565 178 

20 I 108 
II 109 
III 118 
IV 0.448 120 

38 IV 0.448 64.8 

202 

165 

114 

293 
298 
301 300 

19 306 34 

178 
182 191 
196 

30 208 9 

168 
170 175 
175 

46 187 60 

73.5 

*Average of the four values in the preceding column. 
tPercentage change in the average values between two successive levels of contractions. 
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TABLE VIII Summary of changes in structure during 
various phases of thermal contraction 

Degree of Structural changes 
contraction 

0-10% 

10-20% 

20-38% 

A decrease in the L.P. from 190 to 163 A 
A decrease in amorphous orientation 
function from 0.729 to 0.565 
An increase in the regular chain folding* 
An improvement in the lateral order in the 
crystallitest 
An increase in the electron density 
difference between the crystalline and 
amorphous domalns$ 
An increase in the lateral order of the 
macrolattice w 

A decrease in amorphous orientation from 
0.565 to 0.448 
A marked mcrease in the degree of regular 
folding* 
A small increase in degree of crystallinity 
An improvement in macrolattice lateral 
order w 
A small increase in electron density 
difference:) 
No change in L.P. and lateral order of 
crystallites 

A small but significant decrease in the 
degree of crystallinity 
A decrease in the degree of regular chain- 
folding* 
A decrease in the intensity of the small- 
angle pattern 
No significant changes in the long period 
and the four-point angle 
No change in the amorphous orientation 
function and a relatively small decrease in 
the crystalline orientation function 

*As indicated by the intensity changes of the 988 cm -1 
band. 
"~As indicated by the increase in the effective width of the 
crystallites. 
:~As indicated by the intensity changes of the small-angle 
X-ray scattering. 
w indicated by the changes in the width of the spots in 
the small-angle X-ray pattern. 

garded as the precursors of  the macroscopic crack 
which leads to fibre rupture. The existence of  this 
elementary crack, whose dimensions are similar to 
the microfibril  diameter, were recently demon- 
strated by  transmission electron microscopy using 
thin stained cross-sections of  Nylon 6 [10]. From 
photomicrograph of  a highly drawn Nylon 6 fibre 
stained with ShC12, we estimated that the dia- 
meter of  the dark spots indicating the microcracks 
is about ~ 75 A which agrees well with the value of  
the microfibril  diameter derived from SAXS 
analysis by  Harget ( 7 4 A ) [ 6 ] .  In addition, this 
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photomicrograph provides also the number of  
microcracks per unit area which is related to the 
concentrations of  the crack nucleation sites, Z,  
which appears in the Prevorsek-Lyon  theory of  
strength. The number of  the amorphous domains 
per unit  cross-sectional area determined by this 
technique is ~ 2 . 4  x 1011 cm -1 [10].  

From this result and the dimensions of  the long 
period of  90 A, we obtain the concentration of  the 
crack nucleation site to be in the order of  2.6 x 
1017 cm -a which is sufficiently close to the con- 
centration of  free radicals formed in the breakage 
of  Nylon 6 fibres. This result shows that, in the 
process of  fibre breakage, these microcracks do 
not  grow, but  that a minimal amount  of  chain 
scission is required to reach the conditions under 
which these cracks become unstable and propagate 
catastrophically across the specimen. These findings 
support  the validity of  the crack stability criteria 
applied by Prevorsek [ 3 7 - 3 9 ] .  In the theory of  
fibre strength, this author uses the stability criteria 
for an elastic circular crack, derived by Sack [40] ,  

r* - l rpE 
2(l - #2 )q2 c? (16) 

There, r* = radius at which the crack becomes un- 
stable, E = modulus, p = fracture surface energy, 
/a = Poisson's ratio, q = stress concentrat ion factor 
and o = stress. Using the following values of  these 
parameters for Nylon 6 which were either cal- 
culated (calc) or measured (exp), Eex p = 0.7 x 
10n dY ne c m-2 ,  #exp = 0.4, Oexp = 0.35 x 101~ 
p = 1600ergcm -2 and qe~e = 4.2 one finds that  
the critical size of  the crack is in the order of  77 A. 

Since the critical crack size for this case (r* = 
77 A) is of  the same magnitude as the size of the 
pre-existing flaws in the microfibril  ( 7 4 A )  it 
follows that these cracks cannot grow significantly 
during straining to rupture. 

These conclusions are supported by  recent 
studies of  Reimschuessel and Prevorsek with 
strained Nylon 6 fibres using transmission electron 
microscopy. These investigations showed tha t  the 
microcracks of  fibres subjected for short periods 
of  time to stresses amounting to 0.95% of  their 
strength are of  the same dimensions as the micro- 
cracks in the samples before straining. 

The structural model  used in the analysis of  
fibre strength is shown in Fig. 8. The calculation 
proceeds in two steps; (1) The calculations of  the 
concentration factor associated with fibre mor- 
phology, i.e. with the ensemble of  cracks shown 



((3) PET (b) Nylon 6 

C) 623 <D o 
653 623C3 

623623653 
653623653623 
<D 623 CD 
653623 653 

623653653623 
CD <D <D C) 
CD 653 (D C) 
653653653623 
653653(223623 

Figure 8 Model of fibre strength; (a) PET, (b) Nylon 6. 
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in Fig. 9, and (2) the calculations of the strength 
of a parallel ensemble of extended polymer chains 
which constitute the interphase between the 
microfibrils. Pertinent morphological data for a 
high and a low draw ratio Nylon 6 fibre are given 
in Table IX. The stress concentration factor 
associated with an elliptical hole corresponding to 
the amorphous domain of the low draw ratio fibre 
is obtained using 

Q = 1 + 2D/h (17) 

where Q = stress concentration factor, D = dia- 
meter of the crack and h is the height of the crack. 
With the low draw ratio fibre Q = 9.0 (See Fig. 
9a). 

Interactions between equally spaced parallel 
cracks were studied by Koiter [41] and Yokobori 

TABLE IX Nylon 6 model and dimensions (A) (c.f. 
Fig. 9) 

Low draw ratio High draw ratio 

D (= l = r) 119 74 
t 10 29 
H 89 93 
h 30 32 

[42]. Theoretical calculations predict that a speci- 
men with an infinite number of equivalent and 
equal size parallel cracks is stronger than that con- 
taining only one crack of same size. The expression 
describing this case has the following form. 

- 1 2 \ H J  + + . . .  (18) el 8 \ H ]  

In the absence of closed form solution for 
values of a/H observed with fibres of this study, it 
was necessary to determine o-/el  by the following 
experimental technique. 

On one test specimen, only one crack was made 
and on another specimen many cracks were made 
and the tensile strength of the two specimens were 
compared. This study showed that in the entire 
range of a/H investigated, the samples having an 
array of cracks are substantially stronger than 
those having only one crack. From these studies, 
we obtained (l~/O 1 corresponding to low and high 
draw ratio nylon fibres to be" 1.53 and 1.55, 
respectively. Values of parameters used in these 
calculations are given in Table IX. 

Next we calculated the concentration of stress 
for a specimen containing an infinite number of 
coUinear cracks. The calculations and experimental 
data show that the presence of additional cracks 
in collinear arrangement weakens the specimen. 
However, the degree of weakening is not very 
sensitive to the number of cracks. Thus the ratio 
of strength of a sample having one isolated crack 
to that having an infinite number of such cracks in 
collinear arrangement can be approximated by 
o2/ol where 02 is the strength of the sample 
having 2 such cracks. 

The stress concentration factor for a system 
containing 2 cracks as shown in Fig. 9b is given 
by 

ol  t -  (t + t) [K(k)  - E ( k ) ] / K ( k )  
- ~/(l)x/(lt/(r + t) (19) 02 

where 

l r  
k = t + l ) ( t + r ) '  
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and K(k) and E(k) are the complete elliptic 
integrals of the first and second kind. 

For the crack geometry and spacings of the low 
draw ratio fibre, ol/~2 = 1.55. 

The total stress concentration factor for the 
cracks shown in Fig. 9c is then obtained by 
multiplying all three contributions: 

which leads to q =9.1 .  A similar procedure 
applied to the characteristic of the high draw ratio 
fibre leads to a value ofqto~a~ = 4.2. 

Thus, these calculations predict that the strength 
of the high draw ratio fibre would be about twice 
as high as that of the low draw ratio fibre, in 
excellent agreement with the experimental results. 

The strength of uniaxially oriented polymers is, 
therefore, estimated from the strength of the 
extended chain domains, and the stress intensity 
factor associated with the presence of the micro- 
cracks in the system. The parameters affecting the 
stress intensity factors are the crack length, the 
distance between the cracks, and the radius of 
curvature at the tip of the microcrack. 

The values of these parameters are closely re- 
lated to the dimensions of the crystallites (width 
and length, the length of the amorphous domain, 
and the distance between the microfibrils). 

On the basis of this analysis it can then be con- 
cluded that the increase in strength on drawing 
results from: 

(1) the increase of the volume fraction of the 
interfibrillar extended-chain domain, and 

(2) the decrease in stress concentration factor 
at the tip of the microcrack which is associated 
with the decrease in the crystallite width and the 
increase in the distance between the crystallites. 

A p p e n d i x  1 
Derivat ion o f  d i f fus ion equa t ions  
This derivation involves the treatment of diffusion 
in a lattice of identical rectangular parallelpipeds 
embedded in a continuum. The parallelpipeds may 
be parallel with or normal to the direction of flow. 
Figs. 10a and b show the arrangement in side and 
end-on section of the parallelpipeds and Fig. 10c 
shows parts of a chain of parallelpipeds in the con- 
tinuum. The problem involves the evaluation of 
the flux down a single chain. The flow through the 
chain is considered as that through a smaller chain 
of cross-section a 2, and composed of alternating 
crystalline and amorphous regions A and B of 
length ha  and ha, respectively, and a surrounding 
hollow tube of square cross-section of area 
(a + b) 2 - -a  2 = b(2a + b). Flows through the cross- 
section a 2 at the mid-point of A and B are, respec- 
tively, JA and JB and the corresponding flows in 
the surrounding hollow shell are J,~ and J~. 

i i 

J,' Ja 
- ]  . . . . .  

Io) 

I 

I .,~.- o..-~ I 

I I 

Flow 
o 

(b) 

e ~ o %  

( C )  

Figure 10 Geometrical details of the lattice of rectangular paraUelpipeds. Part A = side view, Part B = end-on-view. Phase 
A = [], Phase B = n. 
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Because of non-parallelism of flow lines with the 
chain, JA and JB are non-equal, but instead 

JA = 3':a, (Ai) 

where 3' is a coefficient. 
JA and JB are related to the mean fluxes JA 

and JB by 

JA -= ~A"[A 

and 
JB = flBJB 

where /3 g and /3]3 are coefficients because of the 
non-parallel flow lines. If (CAa--CA2) and 
(Cm--CB2) represent the concentration dif- 
ferences between the upstream and downstream 
faces of A and B, then 

:A = ~AJA = ~Aa2DA(CA~--CA2)/hA (A2) 
and 

JB = [ 3 B Y a  = (3Ba2DB(Cm--CB2)/hB, ( A 3 )  

where DA and DB are, respectively, the diffusion 
coefficients of phase A and phase B. 

If l is the length of the chain and n is the 
number of cells of phase A and phase B in the 
chain, then 

l = n(hA + ha) = nh. (A4) 

The total concentration drop across the com- 
posite membrane as measured in phase A is then 

ACA = n(CA1 -- CA2) + nK(Cm -- CB2) (A5) 

where equilibrium exists at each interface, described 
by Henry's Law Constant K. Then from Equations 
A1, A2, A3, and A5 

/~AhBKDA 1 
ACA = n ( C A I - - C m )  1"t 3-~A~-~a]" (g6) 

The surrounding tube of B is also divided into cells 
of length h A and ha, alternatively, corresponding 
with the cells A and B in the central chain. De- 
fining mean fluxes J~ and J~ in terms of the 
concentration differences (C~I -- C~2) and 
(C~1 --C~2) along the lengths of hA and hB of 
surrounding tube, we have 

j j, , - ,  , b(2a + b)DB 
~#~, HA (Ck~ ' = = - C m )  

hA 
t ! ! I - - !  

= 3' J h  = 3' ~BJB 

"/~hb(2a + b)OB (C~, -- C~,) 
h a  

(A7) 

where /3~, 3",/3~ are coefficients. The total con- 
centration drop across the composite membrane 
as measured in phase B is then 

ACa = n(C'A1 -- C'A2) + n(C~, -- C~2) (A8) 

From Equation A7 

n(CB1 --CB2) = n(Ck l  --CA2) ~,),hA/3h] (A9) 

Substituting Equation A9 into Equation A8 

ACB = n(C'A1--C'Az) (1 + B'AhB 
3"h Aflh ]" 

Because of steady-state conditions 

~CA = KACB, 

and 
t 

JA + J A  = JB +JB,  

(A10) 

(All)  

from Equation A7 3'JB + 3"JB = orb + JB, 

1 - -  3r  
JB/J~ - (A12) 

3'--1 

The overall flux, J, through the cross-section 
ABCD in Figure 5b is then the sum of the fluxes 
through a cross-section of the central chain and 
the surrounding tube (J = JA + J,~ = Ja + JB) 
and is related to the overall concentration drop 
ACB in the continuous phase by (cf Equations A2 
and A3) 

J = (a + b) 2/) ACB (A13) 
l 

where/) is the mean overall diffusion coefficient. 
By combining Equations A2, A7, A11, A12 and 
A13, we obtain 

Jl Jnh 

(a + byDCB (a + b) ~ ~CB 

_ h t 
(a + b) 2 CB ACB] 

D _ 
h [nflAa2DA(CA1 -- Cm) 

V 

(a + b) 2 [ h A ACB 
I 

+ n3'Ab(2a + b)DB(C'Aa -- Ck2)] 

hAACB / 
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_ h [ a2[3AKDA 

(a + b)2 l hA -t [JAhBKDA 
3B TDn 

+ b(2a + b)I3'AD n 
flAhB (A14) 

hA + /~BT 

Thus, this is the general form of the equation 
describing the diffusion in a two-phase system. 

In the case of a semi-crystalline polymeric fibre 
phase A, the crystallites are essentially impermeable 
to the diffusion of dye molecules, whereas phase B 
the amorphous component is permeable. In such a 

t 

system, KDA ~ 0 and flA -+ 1 so that the first term 
of Equation A14 becomes zero; h A is the crystal- 
lite height, hn is the longitudinal spacing between 
the crystallites; h A q-hn = h is long period; b is 
the lateral spacing between the crystallites;Dn can 
be replaced by D A the diffusion coefficient of the 
amorphous phase. DII , the diffusion coefficient 
parallel to the fibre axis is then given by 

hb(2a + b)D A 
DII = (a + b)2hA(1 + hnff3hA) (A15) 

where fl =/~BT' ' is a coefficient related to non- 
parallel flow lines�9 

For a case of diffusion in a direction perpen- 
dicular to the fibre axis reference to Fig. 10a and b 
shows that the crystallite area of cross-section is 
hAa and the surrounding tube area of cross- 
section is (h A + b)(a + b)--hAa or hgb + 
ba + b 2 . 

Substitution of these values of dimensions in 
Equation A15 gives the diffusion coefficient in a 
direction perpendicular to the fibre axis, D• as 

hab + hba + hbb D 
D• = (a + b)a(1 + - b ~ )  h (A16) 

Appendix 2 
Relation between parameters q~ and ;k of 
Takayanagi's unit cube model and 
crystallite dimensions / and d 
Takayanagi has shown that the mechanical 
responses of two-phase systems can be represented 
very accurately by means of a unit cube model. 

According to this model, the system modulus 
Ef is given by 

E t =  X/(~-e + 1--4))Ea +(1 - -X)E , ,  (A17) 
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where B e and E a are the respective moduli of the 
crystalline and amorphous phase and r and X are 
the dimensions of the crystalline domain in the 
model. The product 4)X equals the degree of crystal- 
linity. The scope of this appendix is to establish 
whether there is a correlation between the crystal- 
line domain of the model and actual dimensions 
of the crystallite i.e. crystallite aspect ratio lid. 

Using the Halpin-Tsai equation, which has 
been verified several times in composite structures, 
as a point of reference, we must establish the 
relationship between 4) and X in Equation A17 and 
parameter U in 

EaO + U~X) 
Ef = , (A18) 

1 - ~?X 

where 

r? = (E~- -  1 ) / ( ~ a  + U) (A19) 

l 
U = 2~ (A20) 

By combining Equations A17 and A18, and sub- 
stituting for X with X/4), we obtain 

4) + i - 4 )  + l -  E a -  .r 
Ec ~a  

Division of both sides with E a and substitution 
for Ee/E a with ~" leads to 

X/r X 1 + Ur/X 
+ 1 - (A22) 

~+ 1 - 4 )  4) 1 - ~ x  

Since 
= g- - 1)/(~ + v ) ,  

Equation A22 can be rewritten as 

1+  ~ ' -1  UX 

1 -  ~ ' - 1  x (~--+~) 

where 

= C (A23) 

X/4) X E~ 
C -  +1  - 

~ +  1 --4)  4) Ea 

This substitution gives 

u = (~ - ~x + x ) c -  
1 + ~ x - x - c  

(A24) 

(A25) 



The  E q u a t i o n  A 2 5  cor re la tes  the  crys ta l l i te  aspect  

ra t io  lid ( in  t e r m s  o f  U)  w i t h  the  Tabayanag i  par- 

amete r s  q~ and  X w h i c h  are i nc luded  in C. 

As a numer i ca l  example  we cons ider  the  case 

where  f = E J E a  = 100 and  X = 0.5.  

The  choice  o f  these  values is sui table  for  semi- 

crys ta l l ine  f ibres  such  as PET,  N y l o n  6 and  N y l o n  

66 .  U n d e r  these  co nd i t i ons ,  

0.5/~ 0.5 
C -  + 1 - - - -  

1 - -  0.99~b ~b 

and  

5 0 . 5 C - -  100 
U - 

50.5 - -  C 

TABLE 
function 
0.5 

A-I Values of Ef/Ea, 2lid, k, and 24~/?, as 
of qs: Ec/E a = 100, degree of crystallinity X = 

~b C (= Ef/Ea) U (= 2lid) X 2~p/h 

0.1 1.55 * 5.0 0.04 
0.2 1.62 * 2.5 0.16 
0.3 1.70 * 1.7 0.35 
0.4 1.83 * 1.25 0.64 
0.5 2.0 0.01 1.0 1.0 
0.6 2.22 0.29 0.83 1.45 
0.7 2.61 0.67 0.71 1.96 
0.8 3.38 1.50 0.63 2.54 
0.9 5.54 4.0 0.55 3.28 
1.0 50.5 ~o 0.50 4.0 

*Equation A18 yields negative values for U, so these 
solutions do not have a physical meaning. 

Values  o f  C ( =  Ef/Ea),  U ( =  2lid),  X, and  2$/X 

c o r r e s p o n d i n g  to  values o f  ~b b e t w e e n  0.1 and  1 are 

t a b u l a t e d  in Table  A-I. This  ca lcu la t ion  shows t h a t  

u n d e r  these  cond i t i ons ,  E q u a t i o n  A 18  yields the  

resul t s  wh ich  have  a phys ica l  m e a n i n g  on ly  for  

values o f  0.5 ~< ~ ~< 1. When  q~ = 0.5 the  aspec t  

ra t io  o f  crys ta l l i tes  is 0.01 whi le  $/X is 0.5. Wi th  

= 1, lid b e c o m e s  in f in i ty  while  r  = 2. The  

m a i n  d i f fe rence  b e t w e e n  the  values o f  q~/X and  lid 
is t he re fo re  in  the i r  l imits .  The  var ia t ions  in  lid 
range f r o m  0 to  0% while  r  varies on ly  f r o m  0.5 

to  2. 
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